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Abstract. The Bethe ansatz equations for the spin 1/2 Heisenberg XXZ spin chain are numerically solved,
and the energy eigenvalues are determined for the antiferromagnetic case. We examine the relation between
the XXZ spin chain and the massless Thirring model, and show that the spectrum of the XXZ spin chain has
a gapless excitation while the regularized Thirring model calculated with the Bogoliubov transformation
method has a finite gap. This finite gap spectrum is also confirmed by the Bethe ansatz solution of the
massless Thirring model.
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1 Introduction

Symmetry breaking has been discussed quite extensively
in varieties of field theories [1,2]. It is believed that spon-
taneous symmetry breaking should accompany a massless
boson, and since there should not physically exist a massless
boson in two dimensional field theory due to the infra-red
singularity of the massless boson propagator, symmetry
breaking should not occur in a two dimensional field the-
ory model [3].

However, fermion field theory models are quite differ-
ent in that bosons must be dynamically constructed by
fermions and antifermions. For the fermion field theory
models, the Goldstone boson has been known only for the
current current interaction model of Nambu and Jona-
Lasinio (NJL model) [4]. However, recent careful studies
prove that there is no massless boson in the NJL model
after chiral symmetry breaking [5,6]. The physics of chiral
symmetry breaking is rather simple. The chiral symmetry
which is possessed in the NJL Lagrangian with massless
fermion is broken in the new vacuum since the new vacuum
is lower than the trivial one. If one employs the Bogoli-
ubov transformation method as done by Nambu and Jona-
Lasinio, then one finds that the originally massless fermion
acquires a finite mass, and becomes a massive NJL model
which predicts always a massive boson, and the boson can
never become massless since the induced fermion mass can
never be set to zero.

However, Nambu and other people obtained a massless
boson. The reason is simple: they calculated the boson mass
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by summing up the one loop Feynman diagrams based on
the perturbative vacuum state (false vacuum state). This
is, of course, a wrong procedure and therefore the massless
boson they obtained did not depend on the strength of the
coupling constant [7].

However, if one carries out the calculations of the bo-
son mass by the formulation based on the new vacuum
state (symmetry broken vacuum state), then one obtains
a massive boson, depending on the strength of the cou-
pling constant.

In the same way, the chiral symmetry in the massless
Thirring model is broken in the new vacuum [8], but there
appears nomassless boson [5,6]. Since themasslessThirring
model is believed tobe equivalent to the spin 1/2Heisenberg
XXZ model at the continuum limit [9, 10], it should be
interesting to compare the results of the energy eigenvalues
of the two models at the continuum limit.

In this paper, we solve numerically the Bethe ansatz
equations for the spin 1/2 Heisenberg XXZ model [11,12]
and obtain the energy eigenvalues. The XXZ spin chain has
gapless excitations and is consistent with previous results.
On the other hand, we calculate the energy eigenvalues of
the regularized Thirring model in the Bogoliubov transfor-
mation method [5,13] and find that the regularized Thirring
model has a finite gap and a massive boson state. There-
fore, it is clear that the Heisenberg XXZ model and the
massless Thirring model do not agree with each other since
the spectra are different from each other.

Since the Bogoliubov transformation is not necessar-
ily exact, we have also carried out the calculation of the
Bethe ansatz solutions for the Thirring model [14]. Here,
we confirm that the vacuum has a chiral symmetry broken
state and is lower than the symmetric vacuum, and there
is indeed a finite gap in the excitation spectrum [15]. How-
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ever, we cannot find any boson state in the Bethe ansatz
solution of the Thirring model. This indicates that the Bo-
goliubov transformation method of the Thirring model is
indeed not exact and tends to overestimate the attractions
between fermions and antifermions. However, it can de-
scribe the chiral symmetry breaking phenomena. Also, the
Bogoliubov transformation method can describe the boson
spectrum of QED2 [16] and QCD2 [17] reasonably well.

Here, we discuss the physics behind the difference be-
tween the two models. The equivalence between the spin
1/2 Heisenberg XYZ model and the massive Thirring model
is well established [9]. But the massless limit in the massive
Thirring model is a singular point and should not be taken
naively. The massless Thirring has two types of vacuum,
one of which corresponds to the trivial vacuum with the
chiral symmetry preserved, and the other one is a true vac-
uum with breaking of the chiral symmetry. One sees that
the true vacuum state is lower than the trivial one, and
therefore the true vacuum is physically realized. From the
present analysis, we show that the XXZ spin chain cannot
be reduced to the Thirring model with the true vacuum
even though one may mathematically obtain the Thirring
Lagrangian from the XXZ spin chain.

The proof for the equivalence between the XXZ spin
chain and the Thirring model is based on the naive contin-
uum limit of the XXZ model. However, the XXZ model has
only one scale, and therefore, the physical meaning of the
continuum limit is not clear. All the physical observables
are measured by the lattice constant a, and thus in order
that the very small a makes sense, one should compare a
with another scale quantity. In this respect, the continuum
limit of the XYZ can be well defined, but the XXZ model
should keep the lattice constant a finite. Even if one says
that one could derive the field theory model at the contin-
uum limit (small lattice constant a), all the observables of
this field theory model should be measured by the lattice
constant a. In the Thirring Lagrangian derived mathemat-
ically from the XXZ spin chain, there is no scale parameter
corresponding to the lattice constant a, and physically, this
indicates that the XXZ spin chain and the Thirring model
must be different from each other.

This paper is organized in the following way. In the
next section, we briefly explain the Bethe ansatz solu-
tions for the XXZ spin chain. Section 3 treats the massless
Thirring model in the Bogoliubov transformation method,
and the energy eigenvalues of the vacuum and the excited
states with the chiral symmetry breaking are discussed. In
Sect. 4, we present the Bethe ansatz solutions of the mass-
less Thirring model and show that the symmetry broken
vacuum of the Thirring model is indeed the lowest state.
In Sect. 5, we discuss the equivalence between the XXZ
spin chain and the massless Thirring models. Section 6
summarizes what we have learned here.

2 Heisenberg XXZ model

Here, we briefly describe the Heisenberg XXZ model. The
XXZ model has the following Hamiltonian [11,12]:

H = J

N∑
i=1

(
Sx

i S
x
i+1 + Sy

i S
y
i+1 +∆Sz

i S
z
i+1

)
, (2.1)

where Sa
i is a spin operator at the site i. J and ∆ de-

note the coupling constant and the anisotropy parameter,
respectively, and N is the site number. The periodicity
SN+i = Si is assumed. This Hamiltonian can be numeri-
cally solved by exact diagonalization. However, if one wants
to discuss the excitation spectrum, then one has to have
a site number N larger than N = 1000 or so [18]. This is
practically impossible.

Fortunately, this model is solved by the Bethe ansatz
technique, and the Hamiltonian can be diagonalized by the
superposition of the wave functions φ(zn1 , . . . , znm

) for the
m down spin case as follows:

Ψ =
∑
P

A(n1, . . . , nm)φ(zn1 , . . . , znm) , (2.2)

where P means all possible permutations of the n1, . . . , nm.
Further, the coefficient A(n1, . . . , nm) is assumed to be of
the following shape:

A(n1, . . . , nm)

=
∑
Pµ

∑
P

exp


i

m∑
j

kPjnµj +
1
2

∑
j<�

ϕPjP�


 , (2.3)

where the ki denote the pseudo-momentum of the down
spin site. From the periodic boundary conditions, we obtain
the following equations:

Nkj = 2πλj +
∑

�

ϕj� , (2.4)

where λi are integers running between 0 and N − 1 with
the condition of λ1 ≤ λ2 ≤ . . . ≤ λm. The equation for ϕj�

becomes

cot
ϕj�

2
=

∆ sin
(

kj−k�

2

)

cos
(

kj+k�

2

)
−∆ cos

(
kj−k�

2

) . (2.5)

In this case, we can express the energy eigenvalue E as

E =
(

1
4
N −m

)
∆+

m∑
j=1

cos kj . (2.6)

The Bethe ansatz equations (2.5) can be numerically
solved by the new iteration method which is developed
in [19,20].

Here, we should write the translation of the coupling
constants between the spin chain and theThirringmodel [9],
and the Thirring coupling constant g is related to the∆ by

g =
4π∆

2π −∆
. (2.7)

It should be noted that the correspondence between
the two models is only meaningful for the condition

∆ ≤ 2
5

π , (2.8)
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since g must be smaller than π [9]. The vacuum state of the
field theory corresponds to the state of Sz = 0, which is
just the antiferromagnetic state. In Sect. 4, the numerical
results of the excitation spectrum will be discussed.

Further, we briefly describe the procedure commonly
employed to obtain the Thirring model Lagrangian
from (2.1) [10]. By the Jordan–Wigner transformation, one
can rewrite the Hamiltonian of (2.1) in terms of the spinless
lattice fermion:

H = J
N∑

i=1

[
1
2

(
ψ†

iψi+1 + h.c.
)

+∆
(
ψ†

iψi − 1
2

) (
ψ†

i+1ψi+1 − 1
2

)]
. (2.9)

This Hamiltonian can be reduced to the massless Thirring
model Lagrangian below when one takes naively the con-
tinuum limit [10].

3 Thirring model

The massless Thirring model is described by the following
Lagrangian density [21]:

L = iψ̄γµ∂
µψ − g

2
jµjµ , (3.1)

where the fermion current jµ is given by jµ =: ψ̄γµψ :.
This model is studied by the Bogoliubov transforma-

tion, and it is found that the vacuum has a chiral symmetry
broken phase [5,6,13]. Therefore, the fermion has the fol-
lowing mass:

M =
Λ

sinh(π/g)
. (3.2)

The vacuum energy Evac as measured from the trivial
vacuum ( Etriv.

vac = 0 ) is given by

Evac = − L

2π
Λ2

sinh (π/g)
e− π

g , (3.3)

whereΛ andL denote the cutoff momentum and box length
in this model, respectively, and all of the physical quantities
must be measured by the Λ.

Now, in order to compare directly the regularized
Thirring model prediction to the energy eigenvalues of the
XXZ spin chain model, we start the equation for the bo-
son in the regularized Thirring model where we still keep
the box length L finite. The equation for the boson wave
function becomes just the same as the massive Thirring
model [13] and can be written as [5, 6]

Efn = 2Epnfn − g

L

N0∑
l=−N0

fl

(
1 +

M2

EpnEpl

+
pnpl

EpnEpl

)
,

(3.4a)
where pn and Epn are given as

pn =
2π
L
n , Epn =

√
M2 + p2

n . (3.4b)

Further, the induced fermion mass M is given as the
solution of the following equation:

g

L

N0∑
n=−N0

1√
M2 + p2

n

= 1 . (3.5)

N0 is related to the cutoff momentum Λ by

Λ =
2π
L
N0 . (3.6)

In order to connect the present calculation with the spin
chain, we write the box length L in terms of the lattice
spacing constant a as

L = Na , (3.7)

with N = 2N0 + 1. Thus, for large N , we obtain

Λ =
π
a
. (3.8)

Equation (3.3) can be easily solved by defining A and
B as [13,22]

A =
N0∑

n=−N0

fn , (3.9a)

B =
N0∑

n=−N0

fn

En
. (3.9b)

In this case, we obtain fn as

fn =
g

L

A+ M2

En
B

2En − E
. (3.10)

Putting fn into (3.9), we obtain the eigenvalue equation
for E, and this can be solved in a straightforward manner.

4 Bethe ansatz solutions of the Thirring model

The Thirring model is solved by the Bethe ansatz tech-
nique [14]. The symmetric solution of the vacuum state
has been known and is considered to be the real vacuum
state [21,23]. However, we find the new symmetry broken
vacuum state in the Bethe ansatz solutions of the Thirring
model. This new vacuum energy is lower than the sym-
metric vacuum energy. Detailed discussions will be found
in [15].

From the Bethe ansatz solutions, one obtains the equa-
tions of the periodic boundary conditions for the vacuum
state [14,19,23,24]:

ki =
2πni

L
− 2
L

N∑
j �=i

tan−1
[ g
2
Sij

]
, (4.1a)

Sij =
ki|kj | − kj |ki|

kikj − |ki||kj | − ε2
, (4.1b)
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where Sij denotes the phase shift function. Here, ε denotes
the infrared regulator which should be infinitesimally small.
ki denotes the momentum of the ith particle. The ni are
integer, and run over ni = 0,±1,±2, . . . , N0, with N0 =
(N−1)/2. Here, N and L denotes the particle number and
the box length, respectively. The cutoff momentum Λ is
related to the N and L by

Λ =
2πN0

L
.

For the infrared regulator ε, it is important to note
that the physical observables, like the momentum ki, do
not depend on the regulator ε. Further, the symmetric
solutions of (4.1) are just the same as those given by the
calculations of the other methods. The derivation of (4.1)
is given in the appendix.

The symmetric solution of (4.1) is known and is written
as [23]

k1 = 0 , (4.2a)

for n1 = 0,

ki =
2πni

L
+

2N0

L
tan−1

( g
2

)
, (4.2b)

for ni = 1, 2, . . . , N0, and

ki =
2πni

L
− 2N0

L
tan−1

( g
2

)
, (4.2c)

for ni = −1,−2, . . . , N0. In this case, the vacuum energy
in units of the cutoff Λ is given by

Ev = −
N∑

i=1

|ki|/Λ . (4.3)

From (4.2), we obtain the symmetric vacuum energy,
and it was considered to be the lowest state.

The symmetric vacuum energy Esym
v can be written as

Esym
v = −

[
N0 + 1 +

2N0

π
tan−1

( g
2

)]
. (4.4)

Now, we wish to discuss new solutions in (4.1). Here, we
find that, in (4.1), there is a symmetry broken vacuum state
which is lower than the above symmetric vacuum. By the
numerical calculation of (4.1), we first find the symmetry
broken vacuum state. Now, we call it true vacuum. After
that, we get to know that the solutions can be analytically
written like the symmetric case,

k1 =
2N0

L
tan−1

( g
2

)
, (4.5a)

for n1 = 0,

ki =
2πni

L
+

2N0

L
tan−1

( g
2

)
, (4.5b)

for ni = 1, 2, . . . , N0, and

ki =
2πni

L
− 2(N0 + 1)

L
tan−1

( g
2

)
, (4.5c)
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Fig. 1. We show the momentum distribution of the symmetry
preserved vacuum a, and the true vacuum b for g = 0.5π with
the particle number N = 21. a There is the zero mode (k = 0)
in the symmetry preserved vacuum. b There is no zero mode
in the true vacuum

for ni = −1,−2, . . . ,−N0.
The true vacuum has no ki = 0 solution, and, instead,

all of the momenta of the negative energy particles become
finite. In Fig. 1, we show the momentum distribution of
symmetric and true vacuum states. Note that the true
vacuum state is degenerate due to the k ↔ −k symmetry,
which is always the case with Bethe ansatz solutions. There
is no zero mode (k = 0) in the true vacuum while there
exists a zero mode in the symmetric vacuum. The energy
of the true vacuum state Etrue

v can be written as

Etrue
v = −

[
N0 + 1 +

2(N0 + 1)
π

tan−1
( g

2

)]
. (4.6)

In Table 1, we show the calculated results of the vacuum
energy.As canbe seen, the true vacuumstate is indeed lower
than the symmetric vacuum energy. From the momentum
distribution of the negative energy particles, we see that
the true vacuum state indeed breaks the chiral symmetry.
This situation can be easily seen from the analytical so-
lutions since the absolute value of the momentum of the
negative energy particles is higher than 2N0/L tan−1(g/2).
Therefore, we can define the effective fermion mass MN by

MN =
2N0

L
tan−1

( g
2

)
. (4.7)

Further, we carry out the calculations of the excitation
energy of the one particle–one hole (1p–1h) state. There,
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Table 1. The vacuum energy of Bethe ansatz solutions is
shown for g = 0.5π with the particle number N = 401 and
N = 1601. Esym

v and Etrue
v denote the symmetric vacuum and

the true vacuum energies, respectively. The effective fermion
mass MN deduced from the vacuum momentum distributions
is also shown. All the energies are in units of Λ

N Esym
v Etrue

v MN

401 −285.769 −286.193 0.212
1601 −1140.076 −1140.500 0.212

we take out one negative energy particle (i0th particle) and
put it into a positive energy state. In this case, (4.1) become

ki =
2πni

L
− 2
L

tan−1
( g

2
S̃ii0

)
− 2
L

N∑
j �=i,i0

tan−1
( g

2
Sij

)
,

(4.8a)
for i �= i0, and

ki0 =
2πni0

L
− 2
L

N∑
j �=i0

tan−1
( g

2
S̃i0j

)
, (4.8b)

for i = i0.
Here, S̃i0j is given by

S̃i0j =
ki0 |kj | + kj |ki0 |

ki0kj + |ki0 ||kj | + ε2
. (4.8c)

In this case, the energy of the one particle–one hole
states E1p1h

(i0)
is given by

E1p1h
(i0)

= |ki0 | −
N∑

i=1
i �=i0

|ki| . (4.9)

It turns out that the solutions of (4.8) can be found at
the specific value of ni0 and then from this ni0 value on,
we find the continuous spectrum of the 1p–1h states.

Here, we show the analytical solution of (4.8) for the
first 1p–1h state.

ki0 =
2πni0

L
− 2N0

L
tan−1

( g
2

)
, (4.10a)

for ni0 ,

ki =
2πni

L
+

2(N0 + 1)
L

tan−1
( g

2

)
, (4.10b)

for ni = 0, 1, 2, . . . , N0, and

ki =
2πni

L
− 2N0

L
tan−1

( g
2

)
, (4.10c)

for ni = −1,−2, . . . ,−N0.
Here, ni0 is given by

ni0 =
[
N0

π
tan−1

( g
2

)]
, (4.11)

Table 2. Several lowest states of the calculated 1p–1h states
energy are shown at g = 0.5π with N = 1601. The gap energy
∆E ≡ E1p1h

0 − Ev is also shown. All the energies are measured
in units of Λ

E ∆E
Vacuum −1140.500
1p–1h (1) −1140.075 0.425
1p–1h (2) −1140.074 0.426
1p–1h (3) −1140.072 0.428
1p–1h (4) −1140.071 0.429
1p–1h (5) −1140.070 0.430
1p–1h (6) −1140.069 0.431

where [X] denotes the smallest integer value which is larger
thanX. In this case, we can express the lowest 1p–1h state
energy in units of the cutoff Λ analytically

E1p1h
0 = −

[
(N0 + 1) − 2ni0

N0
+

2(N0 + 1)
π

tan−1
( g

π

)]
.

(4.12)
Therefore, the lowest excitation energy ∆E1p1h

0 with
respect to the true vacuum state becomes

∆E1p−1h
0 ≡ E1p1h

0 − Etrue
v =

2ni0

N0
. (4.13)

If we take the thermodynamic limit, that is, N → ∞
and L → ∞, then (4.12) can be reduced to

∆E1p1h
0 =

2
π

tan−1
( g

2

)
= 2MN/Λ . (4.14)

Fromthis gap energy,we canobtain the effective fermion
mass which is one half of the lowest gap energy. It turns out
that the fermion mass from the gap energy is consistent
with the one deduced from the momentum distribution of
the vacuum state in Table 1.

In Table 2, we show the several lowest states of the 1p–
1h energy by numerical calculation. As can be seen, there is
a finite gap in the excitation spectrum. This calculation of
the Thirring model in terms of the Bethe ansatz solutions
confirms the calculated results of the Bogoliubov transfor-
mation method for the symmetry breaking phenomena.

Here, we comment on the bosonic excitation spectrum
which is predicted by the Bogoliubov transformation
method of theThirringmodel. ThemasslessThirringmodel
can be exactly solved by the Bethe ansatz method. In this
formulation we show that there is no bosonic excitation in
the massless Thirring model. This indicates that the Bo-
goliubov transformation method of the Thirring model is
not exact. In Fig. 2, we show the dispersion relation of the
symmetry broken vacuum predicted by the Bethe ansatz,
and it can be fit by the function

Ek = −
√
k2 + ξ2 , (4.15)

where ξ2 is a constant. Therefore, the Bogoliubov transfor-
mation method may present a good approximate scheme
for the analysis of the Thirring model. In particular, the
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Fig. 2. The bullets (•) show the Bethe ansatz solutions for
the true vacuum of the Thirring model. The dot line shows the
dispersion relation (Ek = −√

k2 + ξ2, where ξ2 is a constant)
which is based on the Bogoliubov transformation calculation

vacuum property may be described well by the Bogoli-
ubov transformation method. However, the Bogoliubov
transformation tends to overestimate the attraction be-
tween fermions and antifermions since it predicts a bosonic
bound state.

5 Non-equivalence between Heisenberg XXZ
and Thirring model

The Heisenberg XYZ spin chain is known to be equivalent
to the massive Thirring model at the continuum limit [9].
The translation of the coupling constants between XYZ
and massive Thirring models is given in (2.7).

From the above equivalence between theXYZ spin chain
and the massive Thirring models, one also expects the
equivalence between the XXZ and the massless Thirring
models since the XXZ spin chain corresponds to the mass-
less limit of the XYZ spin chain. However, the massless
limit is a singular point in the massive Thirring model,
and therefore it is non-trivial whether the XXZ spin chain
and the massless Thirring model are equivalent to each
other. In particular, the massless Thirring model has no
scale, and therefore, one has to introduce the cutoff momen-
tum Λ by which all of the observables must be measured.
On the other hand, the XXZ spin chain has a natural scale
of the lattice constant, and this is an important contrast
to the massless Thirring model.

In Figs. 3 and 4, we show the excitation spectrum of
the two models. Figure 3 shows the calculated results of
the XXZ spin chain by solving the Bethe ansatz equations
while Fig. 4 shows the predicted spectrum of the regularized
Thirring model calculated by the Bogoliubov transforma-
tion method.

As can be seen from these figures, there is a significant
difference between them. In the XXZ spin chain, there is no
gap in the first excited state, but the regularized Thirring
model has a finite gap in the first excited state. This finite
gap is also confirmed by the Bethe ansatz solutions of the
massless Thirring model.

0
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1.0
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E/Λ

Fig. 3. The calculated spectrum of the XXZ spin chain
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E/
Λ

g/π

Fig. 4. The predicted spectrum of the regularized
Thirring model

This means that the two models are not equivalent to
each other, even though it is believed that the XXZ spin
chain at the continuum limit corresponds to the massless
Thirring model [10] if one considers the excitations near
the Fermi sea.

What is wrong with the derivation of the Thirring model
from (2.9)? Here, we present our interpretation of the non-
equivalence of the two models. In the XYZ spin chain, one
can make a continuum limit since there are two parameters
which have dimensions, the lattice constant and the mass
parameter. Therefore, one can make the proper continuum
limit in the XYZ spin chain. However, when one makes a
massless limit from the XYZ to XXZ, then the XXZ pos-
sesses only one scale, the lattice constant. In this case, one
cannot take the continuum limit since everything is already
measured by the lattice constant. The equivalence between
the XXZ spin chain and the massless Thirring model de-
rived up to now must be due to the improper procedure of
the continuum limit in the XXZ spin chain. In this respect,
one should say that there is no corresponding field theory
of the XXZ spin chain in the continuum limit, and therefore
it does not correspond to the massless Thirring model.
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In fact, this continuum field theory of the massless
Thirring model possesses the chiral symmetry which is not
shared by the XXZ spin chain. This continuous symmetry
plays a very important role for the vacuum structure. In the
massless Thirring model, there are two vacua, one which
preserves the chiral symmetry, and the other which violates
the chiral symmetry. Under the chiral symmetry breaking,
the true vacuum goes to the one which is lower than the
trivial vacuum. In this respect, the physical vacuum of the
massless Thirring model is the one that violates the chiral
symmetry. The spectrum should be constructed on this
physical vacuum state. On the other hand, the XXZ spin
chain does not possess this chiral symmetry. and therefore
naturally the spectrum of the XXZ spin chain corresponds
to the one obtained from the trivial vacuum state of the
Thirring model.

6 Conclusions

Wehave examined the relationbetween the spin 1/2Heisen-
berg XXZ model and the massless Thirring model. It turns
out that the spectrum of the XXZ model is different from
the massless Thirring model, and it does not possess the
true vacuum of the massless Thirring model. In this re-
spect, the equivalence between the XXZ and the Thirring
models does not hold, contrary to the case of the massive
theory in which the XYZ spin chain is indeed equivalent
to the massive Thirring model at the continuum limit.

This is essentially due to the fact that the massless
Thirring model has the continuous symmetry (chiral sym-
metry) while the XXZ spin chain does not possess such
a symmetry. Therefore, in the massless Thirring model,
there are two vacua, one which keeps the chiral symme-
try, and the other which violates the chiral symmetry. The
true vacuum is the one that violates the chiral symmetry
since it is lower than the other. But the XXZ spin chain
cannot reproduce the true vacuum state of the massless
Thirring model.

This may indicate rather an important consequence
concerning the lattice version of the continuous field the-
ory model. Once the lattice version of the field theory model
loses some important continuous symmetry, then the lat-
tice version may not be able to reproduce some physically
important spectrum of the continuous field theory model.
Although the XXZ spin chain has of course its own interest
in physics, it should not serve as the lattice version of the
continuous field theory model.

A Derivation of (4.1)

We present the derivation of (4.1) from the Bethe ansatz
equations of the massive Thirring model which are given by
Bergknoff and Thacker [14]. According to the Bethe ansatz,
the Hamiltonian can be digonalized when the phase shift
function Sij is written as

Sij =
sin(θki

− θkj
)

sin(θki + θkj )
, (A.1)

where
tan 2θki

=
m0

ki
. (A.2)

Therefore, we can rewrite it as

sin θki =

√
1 − cos 2θki

2
=

√
Ei − ki√

2Ei

, (A.3)

cos θki
=

√
1 + cos 2θki

2
=

√
Ei + ki√

2Ei

, (A.4)

where Ei =
√
k2

i +m2
0. Thus, we have

sin(θki
− θkj

) =
1

2
√
EiEj

×
[√

Ei − ki

√
Ej + kj −

√
Ei + ki

√
Ej − kj

]
, (A.5a)

cos(θki − θkj ) =
1

2
√
EiEj

×
[√

Ei − ki

√
Ej + kj +

√
Ei + ki

√
Ej − kj

]
. (A.5b)

In this case, Sij becomes

Sij =
√
Ei − ki

√
Ej + kj − √

Ei + ki

√
Ej − kj√

Ei − ki

√
Ej + kj +

√
Ei + ki

√
Ej − kj

=
kiEj − kjEi

kikj − EiEj −m2
0
. (A.6)

For the massless limit m0 → 0, Ei =
√
k2

i +m2
0 → |ki|.

Therefore, we have the phase shift function Sij of the mass-
less Thirring model with the regulator ε as follows:

Sij =
ki|kj | − kj |ki|

kikj − |ki||kj | − ε2
. (A.7)

Here, it should be important to note that the solutions
of (4.1) do not depend on the regulator ε. Therefore, we
can take the massless limit properly.
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